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The so-called 2/15-law for two-point, third-order velocity statistics in isotropic turbu-
lence with helicity is computed for the first time from a direct numerical simulation of
the Navier-Stokes equations in a 5123 periodic domain. This law is a statement of helicity
conservation in the inertial range, analogous to the benchmark Kolmogorov 4/5-law for
energy conservation in high-Reynolds number turbulence. The appropriately normalized
parity-breaking statistics, when measured in an arbitrary direction in the flow, disagree
with the theoretical value of 2/15 predicted for isotropic turbulence. They are highly
anisotropic and variable and remain so over a long times. We employ a recently devel-
oped technique to average over many directions and so recover the statistically isotropic
component of the flow. The angle-averaged statistics achieve the 2/15 factor to within
about 7% instantaneously and about 5% on average over time. The inertial- and viscous-
range behavior of the helicity-dependent statistics and consequently the helicity flux,
which appear in in the 2/15-law, are shown to be more anisotropic and intermittent than
the corresponding energy-dependent reflection-symmetric structure functions, and the en-
ergy flux, which appear in the 4/5-law. This suggests that the Kolmogorov assumption of
local isotropy at high Reynolds numbers needs to be modified for the helicity-dependent
statistics investigated here.

1. Introduction

There are two invariants of the inviscid Navier-Stokes equations – the total energy,
defined by E = 1

2

∫
u(x)2dx, and the total helicity H =

∫
u(x) · ω(x)dx where the

vorticity ω(x) = ∇× u(x). Energy has been extensively studied especially in statistical
theories of turbulence as well as in experiments. Helicity, being sign-indefinite has been
more challenging to study theoretically. Direct experimental measurements of helicity are
also difficult because of the need to measure local gradients, requiring high resolution
and careful probe design (see for example Kholmyansky et al. (2001)). Nevertheless, since
the discovery of helicity as a conserved quantity by Moreau (1961) and independently
by Moffat (1969), there have been several attempts to draw parallels with the energy
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dynamics. The existence of a helicity cascade was proposed by Brissaud et al. (1973) and
various possible inertial range scalings of the energy and helicity spectra were discussed.
The joint forward (downscale) cascade of energy and helicity has been verified in direct
numerical simulations, most recently by Chen et al. (2003a). It was believed for some
time that helicity, though an invariant, played an essentially passive role in turbulence. A
recent work by three of us, Kurien et al. (2004), showed that there is a relevant timescale
for helicity transfer in wavenumber space. The proper consideration of the helicity flux
timescale showed that helicity can modify the energy dynamics, measureably slowing it
down in the high wavenumbers.

We present a study of the small-scale phenomenology of turbulence with helicity in
the manner of the Kolmogorov (1941) investigation (K41) of helicity-free turbulence.
Using the Kármán-Howarth equation for the dynamics of the second-order two-point
correlation function (see von Kármán & Howarth (1938)), Kolmogorov (1941) derived
the benchmark 4/5 energy law for isotropic, reflection-symmetric (helicity-free), homo-
geneous turbulence, assuming finite mean energy dissipation ε as ν → 0,

〈(uL(x + r)− uL(x))
3〉 = −

4

5
εr (1.1)

for η ¿ r ¿ L0, the so-called inertial range. η is the Kolmogorov dissipation scale and
L0 is the typical large scale. uL(x) = uL(x) · r̂ is the longitudinal component of u along
r̂. 〈·〉 denotes a suitable average. Kolmogorov required this to be an ensemble average of
a high-Reynolds number, unforced (slowly decaying) flow. It has been shown empirically
and proved that this is equivalent to a long-time average in statistically steady turbulence
Frisch (1995). In statistically steady state at sufficiently high Reynolds number, the mean
energy flux in the inertial range equals the mean dissipation rate ε = 2ν〈|∇u|2〉 which
is obtained by ensemble-averaging or time-averaging over the entire flow domain. The
4/5-law is a statement of the conservation of energy in the inertial range scales – the
third-order structure function is an indirect measure of the flux of energy through scales
of size r. A key assumption of the K41 theory was ‘local isotropy’ or isotropy of the small
scales r ¿ L0 at sufficiently high Reynolds number. With this assumption, Eq. (1.1)
should be recovered independent of the direction of r̂. This is why high Reynolds number
experimental measurements of the K41 4/5-law have been successful even when the data
are acquired in only a single direction in the flow (Sreenivasan & Dhruva (1998)).

Recently, a local version of the K41 statistical laws were proved in Duchon & Robert
(2000); Eyink (2003): Given any local region B of size R of the flow, for r ¿ R, and in
the limits ν → 0, next r → 0, and finally δ → 0,

〈(∆uL)
3〉(Ω,B) = lim

δ→0

1

δ

∫ t+δ

t

dτ

∫
dΩ

4π

∫

B

dx

R3
[∆uL(r;x, τ)]

3

= −
4

5
εBr. (1.2)

for almost every (Lebesgue) point t in time, where ∆uL(r) = uL(x + r) − uL(x) and
εB is the instantaneous mean energy dissipation rate over the local region B. The angle
integration dΩ integrates in r over the sphere of radius r. For each point x the vector
increment r is allowed to vary over all angles and the resulting longitudinal moments are
integrated. The integration over x is over the flow subdomain B. This version of the K41
result does not require isotropy, homogeneity of stationarity of the flow. Long-time or
ensemble averages are also not required as in the original K41 theory. Eq. (1.2) is a version
of K41 which is truly local in space and time. This version of the 4/5-law has not yet been
rigorously verified empirically. It was shown by Taylor et al. (2003) that averaging the
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third-order structure function over a large (finite) number of directions, that is, allowing r̂

to vary over angles for a fixed separation length r, gave results consistent with the 4/5-law
at any given instant of the flow. At the very least, the 4/5-law does not seem to require
isotropy, or long-time or ensemble averaging to hold; at any instant of a sufficiently ‘high’
Reynolds number flow, averaging over many angles, and over the whole domain appear
to be sufficient.

The first attempt to study the symmetry and dynamics of the two-point correlation
function in flows with helicity was made by Betchov (1961). Analogous to the K41 4/5-
law, the so-called 2/15-law for homogeneous, isotropic turbulence with helicity was de-
rived by different means by Chkhetiani (1996); L’vov et al. (1997); Kurien (2003),

〈∆uL(r)(uT (x + r)× uT (x))〉 =
2

15
hr2 (1.3)

where the transverse component of the velocity uT (x) = u(x)−uL(x); the mean helicity
flux which equals the mean helicity dissipation rate in steady state is h = 2ν〈(∂jui)(∂jωi)〉,
where the vorticity ω = ∇× u. Once again 〈·〉 denotes an ensemble average or average
over long times in steady-state turbulence. We shall use the notation

HLTT (r) = 〈∆uL(x)(uT (x + r)× uT (x))〉 (1.4)

to denote the third-order helical statistics. The quantity HLTT (r) is the simplest third-
order velocity correlation which can have a spatially isotropic component while at the
same time displaying a ‘handedness’ due to the cross-product in its definition (Eq. (1.3)).
HLTT (r)/r

2 is a measure of the helicity flux through scales of size r in the inertial range
which must balance the helicity dissipation h in the viscous range for statistically steady
turbulence. The derivation of the 2/15-law assumes inertial-range behavior of helicity in
some range of scales η ¿ r ¿ L0. A local version, as in Eq. (1.2), of the 2/15-law has
not been derived. A shell model calculation by Biferale et al. (1998) has demonstrated
the likelihood of the 2/15-law. However it has never been measured in experiments or,
until the present work, in direct numerical simulations of the Navier-Stokes equations.

In this paper we present the first direct numerical simulations measurement of the 2/15-
law for helicity conservation in the inertial range. In the next section we will describe the
simulations and the calculation of the statistical quantities of interest for the 2/15-law.
We will present a comparison with the 4/5-law calculation of the same flow, highlighting
the differences between energy and helicity dynamics. We show that in the inertial range
the helicity flux is more anisotropic and intermittent than the energy flux; and that
the smallest resolved scales show recovery of isotropy for energy-dependent statistics
but show persistent anisotropy for helicity-dependent statistics over the 10 large-eddy
turnover times for which simulation ran. We will conclude with some final remarks on
what our analysis means for future work in the area of helicity dynamics and parity-
breaking in turbulent flows.

2. Simulations and Results

We performed a simulation of the forced Navier-Stokes equation in a unit-periodic box
with 512 grid points to a side. In these units the wavenumber k is in integer multiples
of 2π. The forcing scheme was the deterministic forcing of Taylor et al. (2003), modeled
after the deterministic forcing used in Chen et al. (2003a). This forcing simply relaxes the
Fourier coefficients in the first two wave numbers so that the energy matches a prescibed
target spectrum F (k) = 0.5 (k = 1, 2). The forcing does not change the phases of the
coefficients, which are observed to change slowly in time. In addition, maximum helicity
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N ν Rλ E ε H h kmaxη

512 10−4 270 1.72 1.51 -26.8 62.2 1.1

Table 1. Parameters of the numerical simulation. ν - viscosity; Rλ - Taylor Reynolds num-
ber; mean total energy E = 1

2

∑
k ũ(k)2; ε - mean energy dissipation rate; mean total he-

licity H =
∑

k ũ(k) · ω̃(k); h - mean helicity dissipation rate; Kolmogorov dissipation scale

η = (ν3/ε)3/4.
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Figure 1. Dotted line: Flux of energy ΠE normalized by mean dissipation rate of energy ε.
Solid line: Flux of helicity ΠH normalized by mean dissipation rate of helicity h.

was injected into the wavenumbers 1 and 2 using the scheme of Polifke & Shtilman (1989).
The calculation ran for 10 large-eddy turnover times. The flow achieved steady state in
about 1 large-eddy turnover time. The statistics reported here have been calculated
over a total of 45 frames spanning the latter 9 eddy turnover times. The same data
were reported in Kurien et al. (2004). Some additional parameters of the simulation are
given in Table 1. Figure 1 shows the mean energy and helicity fluxes normalized by the
mean energy and helicity dissipation rates respectively. Note the close to decade range of
wavenumbers where ε and h match the energy and helicity fluxes respectively very well.

2.1. Third-order helical velocity statistics and the use of angle-averaging

We first define the compensated quantity

H̃LTT (r) = HLTT (r)/(h r2). (2.1)

In Fig. 2(a) we show H̃LTT (r) calculated from a single frame arbitrarily chosen after

the flow achieved statistically steady state. Each dotted line is H̃LTT (r) in one of 73
different directions in the flow, as a function of scale size r. The directions are fairly
uniformly distributed over the sphere (see Taylor et al. (2003) for how these directions
were chosen). None of the curves show a tendency towards the theoretically predicted
2/15 = 0.13̇ value for an extended range of scales. Among the calculations shown are
those for the three coordinate directions which are the most often reported in statistical
turbulence studies. For any given r the different directions yield vastly different values.
Exceptional are the very largest (forced) scales where the different directions appear to
converge. This is already signals something different than the usual expectation that
anisotropy, if any, should come from, and dominate in, the large scales. Overall angular
dependence (anisotropy) plays a strong role in these statistics. In this snapshot of the
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(a) H̃LTT (r) in 73 different directions of
the flow (dotted lines) from a single frame
after the flow has reached statistically
steady state. The thick solid line is the
mean over all the directions.
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(b) The time-average of H̃LTT (r) in each
of the 73 different directions (dotted
lines) and of the angle-average (thick solid
line).

Figure 2. Instantaneous and time-averaged 2/15 law calculations. The 2/15 value is indicated by
the horizontal line in both plots. The inertial range is gauged from those length scales where the
angle-averaged curve most closely approaches 2/15 and is roughly estimated to be 30 < r < 150.
Note that the vertical scale in the two plots is not the same; the time-averaged quantities on the
right have significantly reduced spread compared to the instantaneous quantities on the left.

flow the anisotropy persists strongly into the smallest resolved scales, as seen in the large
spread of values among the different directions at r/η ≈ 2, where we might expect viscous
effects are important. Indeed it appears that it would be fortuitous for an arbitrary
direction of the flow to yield the correct theoretical prediction for isotropic flow.

Next we extract the isotropic component of these statistics by employing the angle-
averaging technique used in Taylor et al. (2003). In effect, we average the statistics
for a given r over all the directions to get the angle-averaged mean isotropic (angle-
independent) contribution. This is the thick solid curve in Fig. 2(a). It approaches the
2/15 line rather closely in the range 30 < r/η < 150. The peak value of the thick curve is
≈ 0.124 which is within about 7% of the 2/15 value. This is a remarkable result out of a
single snapshot; there is no a priori reason to expect that angle-averaging an arbitrarily
chosen, highly anisotropic snapshot, will yield consistency with the 2/15-law which was
derived for isotropic flow. We believe that this result is strong motivation for the existence
of a local 2/15 law analogous to the local 4/5-law of Eyink (2003). Despite the lack of a
proof we will write down the corresponding local 2/15-law based on our empirical results,

〈∆uL(r)(uT (x + r)× uT (x))〉(Ω,B) = lim
δ→0

1

δ

∫ t+δ

t

dτ

∫
dΩ

4π

∫

B

dx

R3

× [∆uL(r;x, τ)][(uT (x + r)× uT (x))]

=
2

15
hBr2. (2.2)

where Ω, B, R and t have the same meanings as for Eq. (1.2); hB denotes the locally (in
space and time) averaged helicity dissipation rate. We emphasize that there is as yet no
proof for Eq. (2.2); we have merely written down a conjecture by analogy to Eq. (1.2) and
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Figure 3. The value of H̃LTT (r) in the middle of the inertial range (r/η ≈ 65) as a function of
number of eddy turnover times. From top to bottom: Angle-averaged, x-direction, y-direction,
z-direction. Note that the vertical scales in the four panels are not the same; the bottom three
panels corresponding to the coordinate directions have a much greater spread of values than the
top panel for the angle-average. The mean and standard deviations for each case are given in
Table 2.

Inertial range 2/15-law 4/5-law

Theory 0.133̇ 0.8
Angle-avg 0.126 ± 0.009 0.75 ± 0.03

x 0.02 ± 0.31 0.78 ± 0.14
y 0.26 ± 0.23 0.75 ± 0.13
z 0.14 ± 0.21 0.76 ± 0.11

Table 2. Mean and standard deviation of the compensated third order statistics in the middle
of the inertial range.

motivated by our calculation of the 2/15-law for a single snapshot of the fully developed
flow.

In order to check if the anisotropy observed in a single frame persists over time, we
averaged H̃LTT (r) in each of the 73 different directions over 9 large-eddy turnover times
(45 frames). We performed the same time-average for the angle-average. The result is
shown in Fig. 2(b). The spread in the inertial-range decreased by about a factor of 2
while the spread in the smallest scales decreased by a factor of about 6 relative to the
single-frame statistics of Fig. 2(a). Inspite of this, the residual variance is significant
as we demonstrate in Fig. 3 and as compared below to the same analysis done for the
4/5-law. We plot a time-trace of the peak value of the angle-averaged H̃LTT (r) in the
top panel of Fig. 3. The angle-averaged value is 0.126±0.009, within error of the pre-
dicted value of 2/15 = 0.13̇. Since most prior numerical simulations investigations have
studied two-point statistics in the coordinate directions only, we present in the bottom
three panels of Fig. 3, the values of H̃LTT (r) at r/η = 65 (i.e. more or less the middle
of the inertial range on a logarithmic scale) for r̂ in the x-, y- and z-directions respec-
tively as a function of time. Table 2 (column 2) shows the mean and standard deviation
for each of the four time-trace plots of Fig. 3. The first thing to notice is that none of
the coordinate directions average to 2/15 over long times. This behavior demonstrates
that these statistics are highly anisotropic and remain so over long times. Secondly, the
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(a) S̃L,3(r) in 73 different directions of the
flow (dotted lines) from an arbitrarily cho-
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(b) The time-average of S̃L,3(r) in each of
the 73 different directions (dotted lines) and
of the angle-average (thick solid line).

Figure 4. Instantaneous and time-averaged calculations of the 4/5-law. The 4/5 value is
indicated by the horizontal line in both plots.

mean values in the coordinate directions are poorly defined and practically meaningless
in the sense of having extremely large standard deviations; the measured values though
often coming close to 0.13̇, are highly variable for a particular direction. In turbulence
phenomenology, such large jumps in values from their mean is the signature of inter-
mittency; the presence of strong, anomalous events. We conclude that the helicity flux
in a particular direction is highly intermittent in the inertial range. This supports the
conclusion of Chen et al. (2003b), who showed that helicity flux was more intermittent
than energy flux by measuring the scaling exponents of flux-related quantities.

2.2. Comparative analysis of the 4/5-law

We compare these results with the analogous ones for the 4/5-law for the same flow. As
before, we define the compensated third-order longitudinal structure function

S̃L,3(r) = 〈(uL(x + r)− uL(x))
3〉/(εr). (2.3)

Figure 4(a) shows a single frame calculation of S̃L,3(r) for 73 different directions as
a function of r (dotted lines). We performed the angle-averaging exactly as in Taylor
et al. (2003) to recover the isotropic mean (thick solid line). Our first observation is that
the 4/5-law is recovered in this helical flow to as good a degree as in the simulation
with zero mean helicity of Taylor et al. (2003). This demonstrates that the reflection-
symmetry assumption of Kolmogorov, under which the 4/5-law was derived, need not
hold in order to see this result. This is understood by the fact that the lowest-order (un-
closed) dynamical equations for the symmetric second-order correlation functions (von
Kármán & Howarth (1938)) from which the 4/5-law was derived by Kolmogorov (1941),
decouple from their antisymmetric counterpart (Betchov (1961)) from which the 2/15-
law was derived by Kurien (2003). The third-order longitudinal structure functions of
the K41 law are reflection-symmetric by definition, and therefore do not directly probe
the helical, parity-breaking properties of the flow; correspondingly the third-order cor-
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relation function HLTT of the 2/15-law, measured here for the first time, do not probe
the reflection-symmetric properties of the flow. The 4/5- and 2/15-laws in fact coexist in
turbulent flows with helicity. This possibility was first hinted at by Betchov (1961), where
he noted that in the hierarchy of moments, the fourth-order correlation function is the
lowest order at which coupling of the symmetric (energy-dependent) and antisymmetric
(helicity-dependent) quantities can occur.

There is a marked qualitative difference between the snapshot of Fig. 4(a) and the cor-
responding calculation of the 2/15-law in Fig. 2(a). The anisotropy (angular-dependence)
is far smaller in a single snapshot of the 4/5-law as compared to the analogous 2/15-law
calculation, both in the inertial range as well as in the viscous range. We will discuss
the latter effect in section 2.3. In the inertial range, we see in Fig. 4(b), that the time-
averaged compensated third-order longitudinal structure function for all the directions
converge rather well relative to the single frame in Fig. 4(a). There is still significant
spread of values among the different directions in the inertial range but it is far less than
in the time-averaged 2/15-law calculation in Fig. 2(b). To make a more quantitative com-
parison, we present the mid-inertial-range values of the angle-averaged, and the x-, y−
and z−direction calculations in Table 2, column 3. The time mean for the angle-average
is well-defined at 0.75± 0.03, a small standard deviation of 4%. The means in the coor-
dinate directions range from 0.75 to 0.78, not intolerably far from the 0.8 value expected
from theory, but with significant standard deviation in time of the order of 20%. Still,
the behavior is very different from the 2/15-law statistics (Table 2, column 2), where
not only was the 2/15 value not achieved in an arbitrary direction, but the variability in
time was huge, 100% or more. We are lead to conclude that in the inertial range, both
instantaneously and over long times, the helicity flux (as described by the 2/15-law) is
far more anisotropic and intermittent than the energy flux (as described by the 4/5-law)
for the same statistically steady flow.

2.3. The viscous range

As already noted, anisotropy of H̃LTT persists into the smallest resolved scales as demon-
strated by the large variance among the directions in the range r/η < 10 in Figs. 2(a)

and 2(b). By contrast, the angular-dependence of S̃L,3(r) becomes very small in the same
range in a snapshot (Fig. 4(a)) and even more so on average over time (Fig. 4(b)). In
these scales the 2/15- and 4/5-laws no longer hold as viscous effects become important;

the quantities H̃LTT and S̃L,3 no longer correspond strictly to the helicity and energy
fluxes respectively. The viscous terms for the symmetric quantities, interpreted as energy
dissipation at scales r ≈ η, are strictly a sink for energy, pulling energy out of the flow.
As is well known, the viscous terms for the antisymmetric quantities, correspondingly
the helicity-dissipation at scales r ≈ η, may be positive (producing helicity) or negative
(removing helicity). Nevertheless, if the small scale statistics HLTT are to be isotropic,
the different directions might be expected to converge in the very small scales. In Table 3,
column 2, we show time-mean and standard deviation of the angle-average and the x-, y-
and z-direction calculations of HLTT (r) at r/η ≈ 2. The time-mean angle-averaged value
is about 0.014 ± 0.004, a standard deviation of about 30%. Again as in the inertial range,
the time-average in a particular direction does not agree with the angle-averaged value
and the standard deviations are enormous. We have shown the corresponding numbers
for the 4/5-law for comparison (Table 3, column 3); the means in a particular direction
agree better with the angle-averaged mean, and the variances are around 5%, indicating
recovery of isotropy in the small-scales and relatively weaker intermittency than for the
2/15-law statistics. We here introduce a note of caution about the results in the vis-
cous range as our simulation is only resolved upto r/η ≈ 2 (kmax/η ≈ 1.1). While the
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Viscous range 2/15-law 4/5-law

Angle-avg 0.014 ± 0.004 0.035 ± 0.006
x -0.05 ± 0.65 0.057 ± 0.004
y 0.02 ± 0.57 0.055 ± 0.003
z 0.17 ± 0.55 0.057 ± 0.003

Table 3. Mean and standard deviation of the compensated third order statistics for the
smallest resolved scale.

inertial range is amply resolved, the viscous range might display some residual effects
of being under-resolved. Nevertheless, to the extent that in the same flow, the energy-
dependent statistics seem to recover isotropy rather quickly in the viscous scales, it seems
appropriate to point out that the helicity-dependent statistics remain dramatically and
persistently anisotropic in the viscous scales over the long duration of our simulation.

3. Conclusions

There are three main points to be extracted from our first analysis of the 2/15-law.
First, this analysis shows that a local version of the 2/15-law analogous to the local
4/5-law of Duchon & Robert (2000); Eyink (2003), might hold true; we hope our em-
pirical results motivate a theoretical effort towards a proof. Second, the helicity flux is
significantly more anisotropic and intermittent than the energy flux. The related third-
order statistics HLTT remain highly anisotropic all the way into the viscous scales. This
suggests that the viscous generation and dissipation of helicity in the small scales is
highly anisotropic as well. This might be related to the strong helical events seen in the
transverse alignment of vortices in the work of Holm & Kerr (2002). Third, there is an
underlying isotropic component of the flow which is extracted by the angle-averaging
procedure of Taylor et al. (2003). It is not surprising that angle-averaging recovers the
orientation-independent component of the field; this is merely the projection onto the
one-dimensional (isotropic) component of the SO(3) group decomposition. However it is
rather remarkable that this spherically averaged value tends to the predicted 4/5 and

2/15 values for S̃L,3 and H̃LTT respectively. This results suggest that the ’local isotropy’
requirement of K41 can be relaxed in favor of a hypothesis that the flow statistics have
a universal underlying isotropic component which may be projected out.

We conclude with two remarks which were not explicitly mentioned in the body of
this paper. The issues of anisotropy and intermittency of the small-scales of the flow
are intimately connected with the particular kind of statistics measured. We have shown
that in the same flow, certain statistics which depend on energy flux recover isotropy in
the small scales, while others which depend on helicity do not. In this context it is more
sensible to speak of isotropy (or lack of isotropy) of the statistics of the flow rather than
of the flow itself.

A second relevant remark is that our numerical data and analysis give some indica-
tion as to what might be expected when measuring HLTT (r) in high-Reynolds number
experimental flows. In many such experiments, data is acquired at a few points over
long times, and the statistics are obtained by applying Taylor’s hypothesis to obtain
the spatial correlations in a single-direction (for example, the streamwise direction in a
windtunnel). Assuming there is some helicity in the flow, it might not be possible to
predict the behavior of HLTT (r) for a particular direction r̂ (see Kholmyansky et al.
(2001)). In this respect, the full-field information and angle-averaging technique appear
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to be fundamental to recovering the 2/15 isotropic prediction. An experimental effort
such as the three-dimensional velocity field imaging of Tao et al. (2002) could provide the
kind of information required to see this 2/15-law experimentally. This is very different
from measurement of the 4/5-law for energy, where, given a large enough scaling range
(Reynolds number high enough), the statistics in any direction are observed to recover
isotropy in the small scales.

We are grateful for useful discussions with D.D. Holm and G.L. Eyink.
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